Chapitre 7

Fonctions usuelles (partie 1)

Plan du chapitre

1	Géné	ralités sur les fonctions	1
	1.1	Définitions et notations	1
	1.2	Parité et périodicité	2
	1.3	Transformations et symétries du graphe	4
	1.4	Opérations sur \mathbb{R}^D	4
	1.5	Sens de variation	5
	1.6	Fonctions majorées, minorées, bornées	7
	1.7	Maximum, minimum	8
	1.8	Asymptotes	ć
2	Notio	ons intuitives de continuité et de dérivation	g
	2.1	Continuité	ć
	2.2	Dérivation	10
	2.3	Opérations sur les dérivées	11
	2.4	Dérivée et tangente à C_f	13
	2.5	Dérivée et sens de variation	14
	2.6	Étude de fonction	14
3	Fonci	tion à valeurs complexes	16

Hypothèse

Dans tout ce chapitre, D et D' sont supposés être des parties non vides de \mathbb{R} .

1 Généralités sur les fonctions

1.1 Définitions et notations

Dans ce chapitre, on ne considère que des fonctions *réelles de la variable réelle* (càd de \mathbb{R} dans \mathbb{R}). Dans certaines sections on considérera aussi des fonctions *complexes de la variable réelle* (càd de \mathbb{R} dans \mathbb{C}).

Définition 7.1 (Définition "intuitive")

Une <u>fonction (réelle de la variable réelle)</u> est un objet qui à tout réel x associe une expression $f(x) \in \mathbb{R}$ à condition que f(x) ait un sens. On la définit au moyen de la notation :

$$f: x \mapsto f(x)$$

- L'ensemble de définition de f, noté D_f , est l'ensemble des réels x tels que f(x) a un sens.
- Une fois D_f déterminé, on obtient une *application* :

$$f: D_f \to \mathbb{R}$$

 $x \mapsto f(x)$

En particulier, f hérite de toutes les notions inhérentes aux applications : antécédent, image, ensemble de départ, ensemble d'arrivée, restriction, etc.

Par abus, les termes "fonction" et "application" sont souvent utilisés comme des synonymes.

Exemple 1. Déterminer l'ensemble de définition de la fonction $f: x \mapsto x^x$.

Réponse : c'est compliqué... d'où la remarque suivante.

Remarque. Il arrive qu'on souhaite définir une fonction f sur un sous-ensemble $D \subset D_f$. On note alors :

$$f: D \to \mathbb{R}$$
$$x \mapsto f(x)$$

Dans ce cas D est l'ensemble de départ de f (D_f étant son ensemble de définition). On note $\mathcal{F}(D,\mathbb{R})$ ou \mathbb{R}^D l'ensemble des fonctions de D dans \mathbb{R} .

Définition 7.2

Soit $f: D \to \mathbb{R}$ une fonction, $X \subset D$ et \mathfrak{P} une "propriété" que vérifie f. On dit que f vérifie \mathfrak{P} sur X si la fonction $f|_X$ vérifie \mathfrak{P} .

Cette convention ne concerne pas les propriétés "locales" : continuité, dérivabilité entre autres.

Exemple 2. La fonction $f: x \mapsto x^2$ est croissante sur \mathbb{R}_+ (car $f|_{\mathbb{R}_+}$ l'est) et décroissante sur \mathbb{R}_- (car $f|_{\mathbb{R}_-}$ l'est). La fonction $f: x \mapsto \frac{1}{x}$ est majorée par 0 sur \mathbb{R}_+^* et minorée par 0 sur \mathbb{R}_+^* .

Graphe. Rappel: le graphe de la fonction $f: D \to \mathbb{R}$ est l'ensemble

$$\Gamma_f = \{ (x, f(x)) \mid x \in D \}$$

Pour une fonction réelle de la variable réelle, on peut représenter graphiquement Γ_f dans un repère $(O, \overrightarrow{i}, \overrightarrow{j})$ du plan : c'est l'ensemble des points (x, f(x)) lorsque x parcourt D. La courbe reliant ces points est la <u>courbe</u> représentative de f et est notée C_f .

1.2 Parité et périodicité

On dit qu'une partie D de $\mathbb R$ est symétrique par rapport à 0 si

$$\forall x \in D \qquad -x \in D$$

2/16 G. Peltier

Définition 7.3 (Fonction paire, impaire)

Soit D une partie symétrique par rapport à 0 et $f: D \to \mathbb{R}$ une fonction.

1. f est dite paire si:

$$\forall x \in D \qquad f(-x) = f(x).$$

2. f est dite impaire si:

$$\forall x \in D \quad f(-x) = -f(x).$$

Exemple 3. La fonction $x \mapsto x^n$ est paire (resp. impaire) si n est pair (resp. impair).

Remarque. Si $f: D \to \mathbb{R}$ est paire, alors le graphe de f est symétrique par rapport à l'axe des ordonnées.

Si $f:D\to\mathbb{R}$ est impaire, alors le graphe de f est symétrique par rapport à l'origine.

Dans les deux cas, la connaissance du graphe sur $D \cap \mathbb{R}_-$ permet de déduire le graphe sur $D \cap \mathbb{R}_+$ et réciproquement.

Propriété 7.4

Si $f: D \to \mathbb{R}$ est impaire et si $0 \in D$, alors f(0) = 0.

Définition 7.5 (Fonction périodique)

Soit T > 0. Une fonction $f: D \to \mathbb{R}$ est dite T-périodique lorsque :

$$\forall x \in D \qquad \begin{cases} x + T \in D \\ x - T \in D \\ f(x + T) = f(x) \end{cases}$$

On dit également que T est une période de f.

Si T est une période de f alors il en va de même pour 2T, 3T, etc. On considère en général la plus petite période possible.

Remarque. Si $f: D \to \mathbb{R}$ est T-périodique, alors le graphe de f est invariant par des translations successives de vecteur T \overrightarrow{i} et -T \overrightarrow{i} . Ainsi, la connaissance du graphe sur $D \cap [0,T]$ permet de déduire le graphe entier.

Exemple 4. cos est paire et 2π -périodique. sin est impaire et 2π -périodique.

tan est ...

G. Peltier 3 / 16

1.3 Transformations et symétries du graphe

Propriété 7.6 (Effet sur le graphe d'opérations simples)

Connaissant la représentation graphique de f dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$, on peut obtenir celle des fonctions suivantes (avec $a \in \mathbb{R}$) :

$$x \mapsto f(x) + a$$
 $x \mapsto f(-x)$ $x \mapsto f(ax)$ $x \mapsto f(x+a)$ $x \mapsto -f(x)$

et leurs combinaisons. Voir le script suivant : https://www.desmos.com/calculator/ieurh6nsr2

Par exemple:

- La courbe de $x \mapsto f(x) + a$ s'obtient à partir de C_f par une translation de vecteur $a\vec{j}$.
- La courbe de $x \mapsto f(x-a)$ s'obtient à partir de C_f par une translation de vecteur \vec{ai} .

1.4 Opérations sur \mathbb{R}^D

Définition 7.7 (Opérations sur les fonctions)

Soit $f,g\in\mathbb{R}^D$ (donc deux fonctions de même ensemble de départ D). On définit :

• La fonction somme de f et g, notée f+g, et de même pour f-g:

$$f+g: D \to \mathbb{R}$$
 $f-g: D \to \mathbb{R}$ $x \mapsto f(x) + g(x)$ $x \mapsto f(x) - g(x)$

• La fonction <u>produit de f et g</u>, notée fg ou $f \times g$; et si g ne s'annule pas sur D, la fonction $\frac{f}{g}$:

$$fg: D \to \mathbb{R}$$

$$fg: D \to \mathbb{R}$$

$$x \mapsto f(x)g(x)$$

$$x \mapsto \frac{f(x)}{g(x)}$$

• La fonction |f| et, pour tout $\lambda \in \mathbb{R}$, la fonction λf :

$$|f|: D \to \mathbb{R}$$
 $\lambda f: D \to \mathbb{R}$ $x \mapsto |f(x)|$ $x \mapsto \lambda f(x)$

Définition 7.8 (Relation d'ordre < sur les fonctions)

On définit la relation d'ordre $\leq \sup \mathbb{R}^D$ par :

4/16

$$f \le g \iff \forall x \in D \quad f(x) \le g(x)$$

G. Peltier

Il s'agit d'une relation d'ordre partiel (sauf cas particuliers).

Exemple 5. Si D possède au moins deux éléments, les fonctions id_D et $-id_D$ ne sont pas comparables pour la relation d'ordre : $id_D \le -id_D$ et $-id_D \le id_D$.

Définition 7.9 (Composée de fonctions)

Soit f,g deux fonctions. On définit la fonction <u>composée de g et f par $g\circ f: x\mapsto g(f(x))$.</u> L'ensemble de définition de $g\circ f$ est donné par

$$D_{g \circ f} := \{ x \in D_f \mid f(x) \in D_g \} = f^{-1}(D_g)$$

Bien entendu, si f,g sont restreintes à des ensembles $D \subset D_f$ et $D' \subset D_g$, alors il faut adapter la définition ci-dessus. $g \circ f$ sera définie sur D si et seulement si $f(D) \subset D'$.

Exemple 6. Déterminer l'ensemble de définition de f donnée par $f: x \mapsto \sqrt{\frac{x^3}{x+1}}$.

1.5 Sens de variation

Définition 7.10 (Sens de variation)

Soit $f \in \mathbb{R}^D$. On dit que...

• f est croissante si $\forall x, y \in D$ $x \le y \implies f(x) \le f(y)$

• f est strictement croissante si $\forall x, y \in D \quad x < y \Longrightarrow f(x) < f(y)$

• f est décroissante si $\forall x, y \in D$ $x \le y \implies f(x) \ge f(y)$

• f est strictement décroissante si $\forall x, y \in D$ $x < y \implies f(x) > f(y)$

• f est monotone si elle est croissante ou décroissante.

• f est strictement monotone si elle est strictement croissante ou strictement décroissante.

• f est constante si $\forall x, y \in D$ f(x) = f(y).

Remarque. f est (strictement) croissante si et seulement si -f est (strictement) décroissante.

Une fonction est croissante et décroissante si et seulement si elle est constante.

Enfin, pour montrer qu'une fonction n'est pas (par exemple) croissante, il suffit de passer à la négation, donc de trouver $x, y \in D$ tels que $x \le y$ et f(x) > f(y).

Exemple 7. Montrer que $f: x \mapsto |\ln x|$ n'est pas croissante.

G. Peltier 5 / 16

Exemple 8. La fonction inverse $x \mapsto \frac{1}{x}$ est-elle décroissante sur \mathbb{R}_+^* ? Sur \mathbb{R}_+^* ? Sur \mathbb{R}_+^* ?

Remarque (Propriétés immédiates de monotonie). Soit $f,g\in\mathbb{R}^D$.

- 1. Si f, g sont croissantes, alors f + g est croissante.
- 2. Si $\lambda \in \mathbb{R}_+$ et si f est croissante, alors λf est croissante.
- 3. Si f,g sont positives et croissantes, alors fg est croissante.

Démonstration. Montrons les trois propriétés d'un coup. Soit $x,y\in D$ tels que $x\leq y$. Alors comme f et g sont croissantes, on a

$$\begin{cases} f(x) \le f(y) \\ g(x) \le g(y) \end{cases}$$

1.

2.

3.

Propriété 7.11 (Composée de fonctions monotones)

Soit f,g deux fonctions monotones. Alors $g \circ f$ est monotone. Plus précisément :

- Si f,g ont la même monotonie (croissante / décroissante), alors $g \circ f$ est croissante.
- Si f,g sont de monotonies différentes, alors $g \circ f$ est décroissante.

Si de plus f et g sont strictement monotones, alors $g \circ f$ est strictement monotone.

6/16

Démonstration. On ne prouve que la première assertion dans le cas f,g croissantes.

Remarque. Il n'est pas toujours nécessaire de dériver pour trouver un sens de variation !

Exemple 9. Déterminer le sens de variation des fonctions suivantes sans dériver :

- $f: x \mapsto x^3 + x + e^x$ est sur \mathbb{R} car ...
- $f: x \mapsto e^{-x^2}$ est sur \mathbb{R}_+ car ...

1.6 Fonctions majorées, minorées, bornées

Définition 7.12 (Fonctions majorées, minorées, bornées)

Soit $f: D \to \mathbb{R}$ une fonction.

- 1. Étant donné $M \in \mathbb{R}$, on dit que f est majorée par M si $\forall x \in D$ $f(x) \leq M$.
- 2. Étant donné $m \in \mathbb{R}$, on dit que f est minorée par m si $\forall x \in D$ $f(x) \ge m$.
- 3. On dit que f est majorée s'il existe un réel M tel que f est majorée par M, càd

$$\exists M \in \mathbb{R} \quad \forall x \in D \quad f(x) \leq M$$

4. On dit que f est minorée s'il existe un réel m tel que f est minorée par m, càd :

$$\exists m \in \mathbb{R} \quad \forall x \in D \quad f(x) \ge m$$

5. On dit que f est bornée si elle est à la fois majorée et minorée.

On dit également que M est un majorant de f et que m est un minorant de f.

Propriété 7.13

Soit
$$f \in \mathbb{R}^D$$
.

$$f$$
 est bornée \iff $|f|$ est majorée \iff $\exists K \in \mathbb{R}_+ \ \forall x \in D \ |f(x)| \leq K$

G. Peltier 7 / 16

Définition 7.14

Soit $f \in \mathbb{R}^D$.

- 1. f est dite positive si elle est minorée par 0. On notera $f \ge 0$.
- 2. f est dite négative si elle est majorée par 0. On notera $f \leq 0$.
- 3. f est dite strictement positive, et on notera f > 0, si $\forall x \in D$ f(x) > 0.
- 4. f est dite strictement négative, et on notera f < 0, si $\forall x \in D$ f(x) < 0.

Remarque. Dans les réels, a>0 signifie exactement $a\geq 0$ et $a\neq 0$. Pour les fonctions, la notation f>0 ne signifie pas la même chose et peut donc être ambigue. Pour dire que f est positive mais n'est pas égale à la fonction nulle, on peut écrire " $f\geq 0$ et $f\neq 0$ ".

Propriété 7.15 (Relations = et $\leq \operatorname{sur} \mathbb{R}^D$)

Soit D une partie de \mathbb{R} .

• On définit une relation d'équivalence = sur \mathbb{R}^D par :

$$f = g \iff \forall x \in D \quad f(x) = g(x)$$

• On définit une relation d'ordre partiel $\leq \sup \mathbb{R}^D$ par :

$$f \le g \iff \forall x \in D \quad f(x) \le g(x)$$

1.7 Maximum, minimum

Définition 7.16

Soit $f \in \mathbb{R}^D$. On dit que :

- f admet un maximum **en** $a \in D$ lorsque $\forall x \in D$ $f(x) \leq f(a)$.
- f admet un minimum en $a \in D$ lorsque $\forall x \in D$ $f(x) \ge f(a)$.
- f admet un extremum **en** $a \in D$ lorsque f admet un maximum ou un minimum en $a \in D$.

On distinguera bien **le** maximum de f, et le ou les points **en lequel** f atteint ce maximum.

Exemple 10. Le maximum de la fonction cos est 1; ce maximum est atteint **en** les points ...

Le minimum de la fonction \cos est -1; ce minimum est atteint en les points ...

Remarque. La fonction f admet un maximum sur D si et seulement si l'ensemble f(D) admet un plus grand élément : ce plus grand élément est la valeur du maximum de f.

Notation. Lorsque f admet un maximum sur D, la valeur de ce maximum est notée $\max_{x \in D} f(x)$ ou encore $\max_{D} f$. Lorsque f admet un minimum sur D, la valeur de ce minimum est notée $\min_{x \in D} f(x)$ ou encore $\min_{D} f$.

Exemple 11. La fonction $x \mapsto \ln x$ n'admet ni maximum, ni minimum. En revanche, sur [1,2], elle admet un minimum en 1 (de valeur $\ln 1 = 0$) et un maximum en 2 (de valeur $\ln 2$).

8/16 G. Peltier

Méthode

Pour trouver un extremum, on peut faire un tableau de variation.

1.8 Asymptotes

Pour ce chapitre, la notion de limite reste "intuitive", comme en terminale. Elle sera précisée ultérieurement.

Définition 7.17 (Asymptote)

Soit $f: D \to \mathbb{R}$ une fonction.

• S'il existe $\ell \in \mathbb{R}$ tel que

$$\lim_{x \to \pm \infty} f(x) = \ell$$

on dit que C_f présente une <u>asymptote horizontale</u> d'équation $y = \ell$ (en $-\infty$ ou en $+\infty$).

• S'il existe $x_0 \in \mathbb{R}$ tel que

$$\lim_{x \to x_0} |f(x)| = +\infty$$

on dit que C_f présente une <u>asymptote verticale</u> d'équation $x = x_0$.

Exemple 12. La fonction $x \mapsto \frac{1}{x-1}$ admet y = 0 comme asymptote horizontale en $+\infty$ et $-\infty$, ainsi que l'asymptote x = 1 comme asymptote verticale.

2 Notions intuitives de continuité et de dérivation

Hypothèse

Dans toute la suite, I et J désignent des intervalles de \mathbb{R} non vides et non réduits à un point (càd I et J se sont pas des singletons).

2.1 Continuité

Définition 7.18 (Continuité)

Soit $f: I \to \mathbb{R}$ une fonction et $a \in I$. On dit que f est continue en a si

$$\lim_{x \to a} f(x) = f(a)$$

Une limite peut également s'écrire avec une flèche : $f(x) \xrightarrow[x \to a]{} f(a)$. Ne pas mélanger les deux écritures !

Pour que f soit continue en a, il faut en particulier que f soit définie en a (sinon écrire f(a) ci-dessus n'aurait pas de sens).

9/16

Exemple 13. La fonction $x \mapsto |x|$ est continue en 0. La fonction $x \mapsto |x|$ n'est pas continue en 0.

G. Peltier

2.2 Dérivation

Définition 7.19

Soit $f: I \to \mathbb{R}$ une fonction et $a \in I$.

ullet On définit le taux d'accroissement de f en a comme étant la fonction

$$\tau_a: I \setminus \{a\} \to \mathbb{R}$$

$$x \mapsto \frac{f(x) - f(a)}{x - a}$$

• On dit que \underline{f} est dérivable en \underline{a} lorsque $\tau_a(x)$ admet une limite finie en \underline{a} . Dans ce cas, on note :

$$f'(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

et on appelle f'(a) le nombre dérivé de f en a.

Quand on cherche une limite, trois cas sont possibles:

- 1. La limite n'existe pas (par exemple $\sin x$ n'a pas de limite quand x tend vers $+\infty$). Dans ce cas on ne peut pas écrire "lim" : $\lim_{x\to +\infty} \sin x$
- 2. La limite existe et est infinie $(+\infty \text{ ou } -\infty)$: on peut écrire $\lim_{x\to +\infty} \sqrt{x} = +\infty$.
- 3. La limite existe et est finie (i.e. appartient à \mathbb{R}). C'est seulement dans ce cas que f est dérivable en a. On peut alors écrire

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = f'(a)$$

Définition 7.20

Soit $f: I \to \mathbb{R}$ une fonction.

• Soit $A \subset I$. On dit que \underline{f} est dérivable sur \underline{A} lorsque \underline{f} est dérivable en tout point de A. On appelle alors fonction dérivée de \underline{f} , l'application \underline{f}' définie par :

$$f': A \to \mathbb{R}$$

 $x \mapsto f'(x)$

• L'ensemble des points où f est dérivable est appelé ensemble de dérivabilité de f.

On dit que $f: I \to \mathbb{R}$ est dérivable si elle est dérivable sur I.

Exemple 14. Soit $f: x \mapsto \sqrt{x}$. Déterminer l'ensemble de dérivabilité de f et calculer f'.

10 / 16

2.3 Opérations sur les dérivées

Propriété 7.21 (Opérations sur les dérivées)

Soit $u, v \in \mathbb{R}^I$ deux fonctions. Si u, v sont dérivables sur I, alors :

- 1. (Linéarité de la dérivation) Pour tous réels λ , μ , la fonction $\lambda u + \mu v$ est dérivable sur I, et $(\lambda u + \mu v)' = \lambda u' + \mu v'$.
- 2. uv est dérivable sur I, et (uv)' = u'v + v'u.
- 3. Si u ne s'annule pas sur I, alors $\frac{1}{u}$ est dérivable sur I, et $\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$.
- 4. Si v ne s'annule pas sur I, alors $\frac{u}{v}$ est dérivable sur I, et $\left(\frac{u}{v}\right)' = \frac{u'v v'u}{v^2}$.
- 5. Pour $n \in \mathbb{Z}$, u^n est dérivable sur I, et $(u^n)' = nu^{n-1}u'$, avec la convention $u^0 : x \mapsto 1$. (Si n < 0, il faut que u ne s'annule pas sur I)

Démonstration. Par la définition (ou récurrence pour 5). Montrons par exemple l'assertion 3. Pour tout $a \in I$,

$$\frac{\frac{1}{u(x)} - \frac{1}{u(a)}}{x - a} = \frac{\frac{u(a) - u(x)}{u(x)u(a)}}{x - a} = \frac{-1}{u(x)u(a)} \times \frac{u(x) - u(a)}{x - a} \xrightarrow{x \to a} \frac{-1}{u(a)^2} \times u'(a)$$

Ainsi, $\frac{1}{u}$ est dérivable en a et $\left(\frac{1}{u}\right)'(a) = -\frac{u'(a)}{u(a)^2}$. Donc par arbitraire sur a, $\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$.

G. Peltier 11 / 16

Propriété 7.22 (Dérivée d'une composée)

Soit $f: I \to J$ et $g: J \to \mathbb{R}$ deux fonctions. Soit $a \in I$.

Si f est dérivable en a, et si g est dérivable en f(a), alors $g \circ f$ est dérivable en a et

$$(g \circ f)'(a) = g'(f(a)) \times f'(a)$$

Plus généralement, si f est dérivable sur I et g est dérivable sur J, alors $g \circ f$ est dérivable sur I et

$$(g \circ f)' = (g' \circ f) \times f'$$

Démonstration. Admis pour le moment (nécessite la composition des limites).

Méthode (La phrase magique)

S'il y a besoin de justifier qu'une fonction est dérivable, on mentionner que :

- La somme de fonctions dérivables est dérivable.
- La différence de fonctions dérivables est dérivable.
- Le produit de fonctions dérivables est dérivable.
- Le quotient de fonctions dérivables est dérivable.
- La composée de fonctions dérivables est dérivable.
- Toute fonction polynômiale est dérivable.
- Toute fonction rationnelle est dérivable (en les points où elle est définie).
- Les fonctions "usuelles" suivantes sont dérivables (en les points où elles sont définies) :

(les fonctions ch, sh, th, arctan seront vues plus loin)

Démonstration. Cela découle des propriétés ci-dessus.

Exemple 15. Soit $f: x \mapsto \ln(\cos(e^{\frac{x+1}{x-3}}))$. Alors f est dérivable (en tout point où elle est définie) comme composée et quotient de fonctions dérivables.

Attention, les fonctions suivantes ne sont pas dérivables :

$$x \mapsto \sqrt{x}$$
 $x \mapsto |x|$ arccos arcsin

Il faut connaître l'ensemble de dérivabilité de chaque fonction et établir la dérivabilité au cas par cas.

Exemple 16. Soit $f: x \mapsto \sqrt{\frac{x^3}{x+1}}$. Déterminer l'ensemble de dérivabilité de f et calculer f'.

12 / 16 G. Peltier

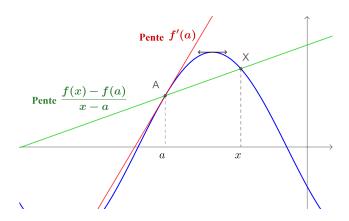
2.4 Dérivée et tangente à C_f

Soit $f: I \to \mathbb{R}$ et $a \in I$. Alors pour tout $x \in I \setminus \{a\}$, le taux d'accroissement $\frac{f(x) - f(a)}{x - a}$ est la pente de la droite qui relie les points (a, f(a)) à (x, f(x)). Quand x tend vers a, si f est dérivable en a, cette pente tend vers f'(a) qui correspond à la pente de la tangente à la courbe C_f au point a.

Propriété 7.23

Soit $f:I\to\mathbb{R}$ dérivable en $a\in I$. La courbe représentative de f admet au point de coordonnées (a,f(a)) une tangente (non verticale) d'équation :

$$T: y = f'(a)(x-a) + f(a)$$



En particulier, si f'(a) = 0, alors la tangente à C_f en x = a est horizontale. On le représente sur la courbe par une double flèche \leftrightarrow comme ci-dessus (ou, si a est un bord de I, une demi-flèche \to ou \leftarrow).

G. Peltier 13 / 16

2.5 Dérivée et sens de variation

Théorème 7.24 (Dérivée et sens de variation)

Soit f une fonction dérivable sur un **intervalle** I.

- f est croissante sur I si et seulement si $f' \ge 0$ sur I.
- f est décroissante sur I si et seulement si $f' \le 0$ sur I.
- f est constante sur I si et seulement si f' = 0 sur I.
- Si f' > 0 (resp. f' < 0) sur I, alors f est strictement croissante (resp. décroissante) sur I.

Démonstration. Admis pour le moment

Remarque. Il est indispensable, pour appliquer ce résultat, que I soit un **intervalle**. La fonction $f: x \mapsto \frac{1}{x}$, est dérivable sur \mathbb{R}^* avec f' < 0, mais f n'est pas décroissante sur \mathbb{R}^* !

On notera que la dernière assertion n'est pas une équivalence, mais une simple implication. La réciproque de cette implication est fausse : par exemple $f: x \mapsto x^3$ est strictement croissante sur $\mathbb R$ mais sa dérivée n'est pas strictement positive : elle s'annule en 0. On verra une réciproque complète à un chapitre ultérieur.

2.6 Étude de fonction

Méthode (Plan d'étude d'une fonction)

- 1. Recherche de l'ensemble de définition D_f .
- 2. Étude de la périodicité *puis* de la parité, ce qui permet de restreindre le domaine d'étude à $D \subset D_f$.
- 3. Étude des variations sur D, avec éventuellement : dérivabilité, calcul de f', tableau de variations de f. Préciser dans le tableau les limites aux bords de D.
- 4. Recherche des asymptotes (verticales, horizontales).
- 5. (Optionnel) Pour aider au tracé, pour certaines valeurs $x \in D$, calcul de f(x) et de l'équation de la tangente à C_f en x.
- 6. Tracé de la courbe pour $x \in D$, en s'aidant des points particuliers, des asymptotes, et des tangentes.

Exemple 17. Étudier
$$f: x \mapsto \sqrt{\frac{x^3}{x+1}}$$
.

14 / 16 G. Peltier

Exemple 18. Étudier $g: x \mapsto \tan x$.

G. Peltier 15 / 16

3 Fonction à valeurs complexes

Dans cette section on considère des fonctions *complexes à variable réelle*, càd des fonctions f de \mathbb{R} dans \mathbb{C} .

Définition 7.25

Soit $f:D\to\mathbb{C}$ une fonction. On définit

$$\begin{aligned} \operatorname{Re} f : D &\to \mathbb{R} \\ x &\mapsto \operatorname{Re} (f(x)) \end{aligned} \qquad \begin{aligned} \operatorname{Im} f : D &\to \mathbb{R} \\ x &\mapsto \operatorname{Im} (f(x)) \end{aligned}$$

Noter que ce sont des fonctions de \mathbb{R}^D alors que $f \in \mathbb{C}^D$.

Définition 7.26

Soit $f:D\to\mathbb{C}$ une fonction. On dit que f est $\underline{\mathsf{d\acute{e}rivable}}$ lorsque $\mathsf{Re}f$ et $\mathsf{Im}f$ le sont. On définit alors la fonction dérivée de f comme étant :

$$f' := (\operatorname{Re} f)' + i (\operatorname{Im} f)'$$

Propriété 7.27 (Dérivation dans \mathbb{C}^D)

Soit $u, v : I \to \mathbb{C}$ deux fonctions dérivables sur I. Les résultats des propriétés 7.21 et 7.22 sont encore vrais dans ce cadre.

Au final, tout se passe comme si i était une constante quelconque.

Exemple 19. Dériver la fonction $f(x) = (1 + ix)^6$.

16 / 16 G. Peltier